The goal of this notebook is to demonstrate stock screening using the following eight criteria:

  1. PE ratio < 22
  2. Return on invested capital > 9%
  3. Revenue growth
  4. Net income growth
  5. Shares outstanding decreasing or even
  6. Long term liabilities / 5 year free cash flow < 5
  7. Free cash flow growth
  8. Price to free cash flow < 20

Let’s do this for Best Buy, ticker BBY.

ticker <- "WBA"

fin <- yahoo_financials(ticker)
fin_web <- yahoo_financials_web(ticker)
fin_web
## # A tibble: 4 × 5
##   endDate             basicEps dilutedEps basicAverageShares dilutedAverageShar…
##   <dttm>                 <dbl>      <dbl>              <dbl>               <dbl>
## 1 2021-08-31 00:00:00    NA         NA                    NA                  NA
## 2 2020-08-31 00:00:00     0.52       0.52          879400000           880300000
## 3 2019-08-31 00:00:00     4.32       4.31          921500000           923500000
## 4 2018-08-31 00:00:00     5.07       5.05          991000000           995000000

PE ratio < 22

For the trailing PE ratio, use current price and the EPS history from yahoo_financials_web():

price <- yahoo_history(ticker, interval = "1d", days = 1, end_date = Sys.time()) %>%
  arrange(desc(date)) %>%
  head(1)

price
## # A tibble: 1 × 8
##   date                 open  high   low close adjusted_close  volume symbol
##   <dttm>              <dbl> <dbl> <dbl> <dbl>          <dbl>   <dbl> <chr> 
## 1 2021-12-16 00:00:00  48.5  49.9  48.5  49.6           49.6 1629754 WBA
pe_ratio <- price$open / mean(fin_web$dilutedEps, na.rm = TRUE)

This gives us a mean PE ratio of 14.73.

ggplot() +
  geom_bar(aes(x = fin$endDate, y = fin_web$dilutedEps), stat = "identity", fill = "#33658A", width = as.numeric(days(100))) +
  xlab("date") + ylab("Earnings per share")

Return on invested capital > 9%

Return on invested capital will be calculated here as cash flow divided by equity + debt. Needs to be checked ⚠️.

roic <- fin$freeCashflow / (fin$longTermDebt + fin$totalStockholderEquity)

ggplot() +
  geom_bar(aes(x = fin$endDate, y = roic), stat = "identity", fill = "#33658A", width = as.numeric(days(100))) +
  xlab("date") + ylab("ROIC")

This gives us a mean ROIC of 0.14.

Revenue growth

Revenue should be going up, so let’s try a linear regression model.

mod <- lm(fin$totalRevenue ~ fin$endDate)
summary(mod)
## 
## Call:
## lm(formula = fin$totalRevenue ~ fin$endDate)
## 
## Residuals:
##          1          2          3          4 
##  5.260e+09 -4.785e+09 -6.210e+09  5.735e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.023e+11  1.752e+11   0.584    0.618
## fin$endDate 1.529e+01  1.106e+02   0.138    0.903
## 
## Residual standard error: 7.811e+09 on 2 degrees of freedom
## Multiple R-squared:  0.009456,   Adjusted R-squared:  -0.4858 
## F-statistic: 0.01909 on 1 and 2 DF,  p-value: 0.9028
ggplot(fin) + 
  geom_point(aes(x = endDate, y = totalRevenue)) + 
  geom_abline(slope = coef(mod)[["fin$endDate"]], intercept = coef(mod)[["(Intercept)"]]) +
  scale_y_continuous(expand = c(0.1, 0), limits = c(0, NA))

This gives us an annual growth rate of 0.

Net income growth

Same procedure as before:

mod <- lm(fin$netIncome ~ fin$endDate)
summary(mod)
## 
## Call:
## lm(formula = fin$netIncome ~ fin$endDate)
## 
## Residuals:
##          1          2          3          4 
##  1.187e+09 -1.995e+09  4.313e+08  3.768e+08 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)  5.804e+10  3.793e+10   1.530    0.266
## fin$endDate -3.477e+01  2.395e+01  -1.452    0.284
## 
## Residual standard error: 1.691e+09 on 2 degrees of freedom
## Multiple R-squared:  0.513,  Adjusted R-squared:  0.2695 
## F-statistic: 2.107 on 1 and 2 DF,  p-value: 0.2838
ggplot(fin) + 
  geom_point(aes(x = endDate, y = netIncome)) + 
  geom_abline(slope = coef(mod)[["fin$endDate"]], intercept = coef(mod)[["(Intercept)"]]) +
  scale_y_continuous(expand = c(0.1, 0), limits = c(0, NA))

This gives us an annual growth rate of -0.37.

Shares outstanding

Shares outstanding should be decreasing or staying the same.

mod <- lm(fin_web$dilutedAverageShares ~ fin_web$endDate)
summary(mod)
## 
## Call:
## lm(formula = fin_web$dilutedAverageShares ~ fin_web$endDate)
## 
## Residuals:
##        2        3        4 
##  4736327 -9485630  4749303 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      3.779e+09  4.077e+08   9.268   0.0684 .
## fin_web$endDate -1.816e+00  2.601e-01  -6.981   0.0906 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11620000 on 1 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9799, Adjusted R-squared:  0.9598 
## F-statistic: 48.73 on 1 and 1 DF,  p-value: 0.09058
ggplot(fin_web) + 
  geom_point(aes(x = endDate, y = dilutedAverageShares)) + 
  geom_abline(slope = coef(mod)[["fin_web$endDate"]], intercept = coef(mod)[["(Intercept)"]]) +
  scale_y_continuous(expand = c(0.1, 0), limits = c(0, NA))

This gives us an annual growth rate of NA.

Long term liabilities / 5 year free cash flow < 5

To do.

Free cash flow growth

mod <- lm(fin$freeCashflow ~ fin$endDate)
summary(mod)
## 
## Call:
## lm(formula = fin$freeCashflow ~ fin$endDate)
## 
## Residuals:
##          1          2          3          4 
##  5.983e+08 -2.608e+08 -1.274e+09  9.367e+08 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)
## (Intercept)  4.458e+10  2.713e+10   1.643    0.242
## fin$endDate -2.515e+01  1.714e+01  -1.468    0.280
## 
## Residual standard error: 1.21e+09 on 2 degrees of freedom
## Multiple R-squared:  0.5185, Adjusted R-squared:  0.2778 
## F-statistic: 2.154 on 1 and 2 DF,  p-value: 0.2799
ggplot(fin) + 
  geom_point(aes(x = endDate, y = freeCashflow)) + 
  geom_abline(slope = coef(mod)[["fin$endDate"]], intercept = coef(mod)[["(Intercept)"]]) +
  scale_y_continuous(expand = c(0.1, 0), limits = c(0, NA))

This gives us an annual growth rate of -0.17.

Price to free cash flow < 20

pfcf <- price$open / mean(fin$freeCashflow / fin_web$dilutedAverageShares, na.rm = TRUE)

This gives us a price to free cash flow of 9.2.

ggplot() +
  geom_bar(aes(x = fin$endDate, y = fin$freeCashflow / fin_web$dilutedAverageShares), stat = "identity", fill = "#33658A", width = as.numeric(days(100))) +
  xlab("date") + ylab("Free cash flow per share")

Bringing it all together

bind_rows(
  eight_pillars("BBY"),
  eight_pillars("MSFT")
)
## # A tibble: 2 × 14
##   pe_ratio pe_ratio_ok  roic roic_ok revenue_growth revenue_growth_ok
##      <dbl> <lgl>       <dbl> <lgl>            <dbl> <lgl>            
## 1     19.4 TRUE        0.449 TRUE            0.0367 TRUE             
## 2     63.9 FALSE       0.245 TRUE            0.139  TRUE             
## # … with 8 more variables: net_income_growth <dbl>, net_income_growth_ok <lgl>,
## #   shares_outstanding <dbl>, shares_outstanding_ok <lgl>, fcf_growth <dbl>,
## #   fcf_growth_ok <lgl>, pfcf <dbl>, pfcf_ok <lgl>